Power Series

Liming Pang

A **power series** about a number x_0 is a series of the form

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n = c_0 + c_1 (x - x_0)^1 + c_2 (x - x_0)^2 + \dots$$

where c_n are constants and x is a variable. When we plug in a specific value for x, the corresponding series may be convergent or divergent. An interesting question to ask is to find the set of values for x so that the given power series converges.

Theorem 1. For a given power series $\sum_{n=0}^{\infty} c_n (x - x_0)^n$, one of the following will happen:

1. $\sum_{n=0}^{\infty} c_n (x - x_0)^n \text{ converges only at } x = x_0.$ 2. $\sum_{n=0}^{\infty} c_n (x - x_0)^n \text{ converges for all } x \in \mathbb{R}.$

3. There exists a constant R > 0 such that $\sum_{n=0}^{\infty} c_n (x - x_0)^n$ converges for $|x - x_0| < R$ and diverges for $|x - x_0| > R$.

Definition 2. The number R appeared in the above theorem is called the radius of convergence of the series $\sum_{n=0}^{\infty} c_n (x-x_0)^n$. If the series converges only at $x = x_0$, we define R = 0; if the series converges for all $x \in \mathbb{R}$, we define $R = \infty$.

Remark 3. For points on the radius of convergence, the above theorem does not provide a conclusive answer about the convergence of the power series at these points.

Theorem 4. $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ is a power series. The radius of convergence of this power series is:

$$R = \lim_{n \to \infty} \frac{c_n}{c_{n+1}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{c_n}}$$

provided the above limits converges or diverge to ∞ .

Proof. First observe that

$$\lim_{n \to \infty} \frac{c_{n+1}(x-x_0)^{n+1}}{c_n(x-x_0)^n} = |x-x_0| \lim_{n \to \infty} \frac{c_{n+1}}{c_n}$$

If $\lim_{n\to\infty} \frac{c_n}{c_{n+1}} = 0$, then for any $x \neq x_0$,

$$\lim_{n \to \infty} \frac{c_{n+1}(x-x_0)^{n+1}}{c_n(x-x_0)^n} = |x-x_0| \lim_{n \to \infty} \frac{c_{n+1}}{c_n} = \infty$$

So by the Ratio Test the power series diverges for all $x \neq x_0$, the radius of convergence is R = 0.

If $\lim_{n\to\infty} \frac{c_n}{c_{n+1}}$ is a positive constant, then

$$\lim_{n \to \infty} \frac{c_{n+1}(x-x_0)^{n+1}}{c_n(x-x_0)^n} = \frac{|x-x_0|}{\lim_{n \to \infty} \frac{c_n}{c_{n+1}}} = \begin{cases} <1 \text{ if } |x-x_0| < \lim_{n \to \infty} \frac{c_n}{c_{n+1}} \\ >1 \text{ if } |x-x_0| > \lim_{n \to \infty} \frac{c_n}{c_{n+1}} \end{cases}$$

By the Ratio Test, we see the radius of convergence is $R = \lim_{n \to \infty} \frac{c_n}{c_{n+1}}$. If $\lim_{n \to \infty} \frac{c_n}{c_{n+1}} = \infty$, then for any $x \in \mathbb{R}$,

$$\lim_{n \to \infty} \frac{c_{n+1}(x-x_0)^{n+1}}{c_n(x-x_0)^n} = |x-x_0| \lim_{n \to \infty} \frac{c_{n+1}}{c_n} = 0$$

So by the Ratio Test the power series converges for all $x \in \mathbb{R}$, the radius of convergence is $R = \infty$.

Next observe that

$$\lim_{n \to \infty} \sqrt[n]{|c_n(x-x_0)^n|} = |x-x_0| \lim_{n \to \infty} \sqrt[n]{|c_n|}$$

If $\lim_{n\to\infty} \frac{1}{\sqrt[n]{c_n}} = 0$, then for any $x \neq x_0$,

$$\lim_{n \to \infty} \sqrt[n]{|c_n (x - x_0)^n|} = |x - x_0| \lim_{n \to \infty} \sqrt[n]{|c_n|} = \infty$$

So by the Root Test the power series diverges for all $x \neq x_0$, the radius of convergence is R = 0.

If $\lim_{n\to\infty} \frac{1}{\sqrt[n]{c_n}}$ is a positive constant, then

$$\lim_{n \to \infty} \sqrt[n]{|c_n(x-x_0)^n|} = \frac{|x-x_0|}{\lim_{n \to \infty} \frac{1}{\sqrt[n]{c_n}}} = \begin{cases} <1 \text{ if } |x-x_0| < \lim_{n \to \infty} \frac{c_n}{c_{n+1}} \\ >1 \text{ if } |x-x_0| > \lim_{n \to \infty} \frac{c_n}{c_{n+1}} \end{cases}$$

By the Root Test, we see the radius of convergence is $R = \lim_{n \to \infty} \frac{c_n}{c_{n+1}}$.

If $\lim_{n\to\infty} \frac{1}{\sqrt[n]{c_n}} = \infty$, then for any $x \in \mathbb{R}$,

$$\lim_{n \to \infty} \sqrt[n]{|c_n (x - x_0)^n|} = |x - x_0| \lim_{n \to \infty} \sqrt[n]{|c_n|} = 0$$

So by the Root Test the power series converges for all $x \in \mathbb{R}$, the radius of convergence is $R = \infty$.

Example 5. Determine for which choice of x is the power series $\sum_{n=0}^{\infty} x^n$ convergent.

The radius of convergence is

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} 1 = 1$$

So the series converges for |x| < 1 and diverges for |x| > 1.

We need to study the case |x| = 1 separately. When |x| = 1, the limit $\lim_{n \to \infty} |x|^n = \lim_{n \to \infty} 1 = 1 \neq 0$, so the series diverges at $x = \pm 1$. We conclude the power series converges for |x| < 1 and diverges for

We conclude the power series converges for |x| < 1 and diverges for $|x| \ge 1$.

Example 6. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-3x)^n}{\sqrt{n+1}}$ and discuss the convergence for x at the radius of convergence.

The power series is $\sum_{n=0}^{\infty} \frac{(-3x)^n}{\sqrt{n+1}} = \sum_{n=0}^{\infty} \frac{(-3)^n}{\sqrt{n+1}} x^n$ The radius of convergence is

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-3)^n}{\sqrt{n+1}}}{\frac{(-3)^{n+1}}{\sqrt{n+2}}} \right| = \frac{1}{3} \lim_{n \to \infty} \sqrt{\frac{n+2}{n+1}} = \frac{1}{3}$$

When $x = \frac{1}{3}$, the series becomes $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is convergent by the Alternating Convergence Test.

When $x = -\frac{1}{3}$, the series becomes $\sum_{n=0}^{\infty} \frac{1}{n+1}$, which is divergent.

Example 7. The Bessel function is defined as

$$J(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

Find its domain.

To find its domain is the same as to find all x at which the power series converges. Let $y = x^2$, then consider

$$\tilde{J}(y) = \sum_{n=0}^{\infty} \frac{(-1)^n y^n}{2^{2n} (n!)^2}$$

We see $J(x) = \tilde{J}(x^2)$, so we first figure out the domain for \tilde{J} . The radius of convergence for \tilde{J} is

$$R = \lim_{n \to \infty} \left| \frac{\frac{(-1)^n}{2^{2n}(n!)^2}}{\frac{(-1)^{n+1}}{2^{2(n+1)}((n+1)!)^2}} \right| = \lim_{n \to \infty} 4(n+1)^2 = \infty$$

So the domain of \tilde{J} is \mathbb{R} , hence the domain of J(x) is \mathbb{R} .