
Power Series
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A power series about a number x0 is a series of the form

∞∑
n=0

cn(x− x0)
n = c0 + c1(x− x0)

1 + c2(x− x0)
2 + ...

where cn are constants and x is a variable. When we plug in a specific
value for x, the corresponding series may be convergent or divergent. An
interesting question to ask is to find the set of values for x so that the given
power series converges.

Theorem 1. For a given power series
∞∑
n=0

cn(x− x0)
n, one of the following

will happen:

1.
∞∑
n=0

cn(x− x0)
n converges only at x = x0.

2.
∞∑
n=0

cn(x− x0)
n converges for all x ∈ R.

3. There exists a constant R > 0 such that
∞∑
n=0

cn(x − x0)
n converges for

|x− x0| < R and diverges for |x− x0| > R.

Definition 2. The number R appeared in the above theorem is called the

radius of convergence of the series
∞∑
n=0

cn(x−x0)
n. If the series converges

only at x = x0, we define R = 0; if the series converges for all x ∈ R, we
define R =∞.
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Remark 3. For points on the radius of convergence, the above theorem does
not provide a conclusive answer about the convergence of the power series at
these points.

Theorem 4.
∞∑
n=0

cn(x − x0)
n is a power series. The radius of convergence

of this power series is:

R = lim
n→∞

cn
cn+1

= lim
n→∞

1
n
√
cn

provided the above limits converges or diverge to ∞.

Proof. First observe that

lim
n→∞

cn+1(x− x0)
n+1

cn(x− x0)n
= |x− x0| lim

n→∞

cn+1

cn

If limn→∞
cn

cn+1
= 0, then for any x 6= x0,

lim
n→∞

cn+1(x− x0)
n+1

cn(x− x0)n
= |x− x0| lim

n→∞

cn+1

cn
=∞

So by the Ratio Test the power series diverges for all x 6= x0, the radius of
convergence is R = 0.

If limn→∞
cn

cn+1
is a positive constant, then

lim
n→∞

cn+1(x− x0)
n+1

cn(x− x0)n
=

|x− x0|
limn→∞

cn
cn+1

=

{
< 1 if |x− x0| < limn→∞

cn
cn+1

> 1 if |x− x0| > limn→∞
cn

cn+1

By the Ratio Test, we see the radius of convergence is R = limn→∞
cn

cn+1
.

If limn→∞
cn

cn+1
=∞, then for any x ∈ R,

lim
n→∞

cn+1(x− x0)
n+1

cn(x− x0)n
= |x− x0| lim

n→∞

cn+1

cn
= 0

So by the Ratio Test the power series converges for all x ∈ R, the radius of
convergence is R =∞.
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Next observe that

lim
n→∞

n
√
|cn(x− x0)n| = |x− x0| lim

n→∞
n
√
cn

If limn→∞
1

n
√
cn

= 0, then for any x 6= x0,

lim
n→∞

n
√
|cn(x− x0)n| = |x− x0| lim

n→∞
n
√
cn =∞

So by the Root Test the power series diverges for all x 6= x0, the radius of
convergence is R = 0.

If limn→∞
1

n
√
cn

is a positive constant, then

lim
n→∞

n
√
|cn(x− x0)n| =

|x− x0|
limn→∞

1
n
√
cn

=

{
< 1 if |x− x0| < limn→∞

cn
cn+1

> 1 if |x− x0| > limn→∞
cn

cn+1

By the Root Test, we see the radius of convergence is R = limn→∞
cn

cn+1
.

If limn→∞
1

n
√
cn

=∞, then for any x ∈ R,

lim
n→∞

n
√
|cn(x− x0)n| = |x− x0| lim

n→∞
n
√
cn = 0

So by the Root Test the power series converges for all x ∈ R, the radius of
convergence is R =∞.

Example 5. Determine for which choice of x is the power series
∞∑
n=0

xn

convergent.
The radius of convergence is

R = lim
n→∞

| cn
cn+1

| = lim
n→∞

1 = 1

So the series converges for |x| < 1 and diverges for |x| > 1.
We need to study the case |x| = 1 separately. When |x| = 1, the limit

lim
n→∞

|x|n = lim
n→∞

1 = 1 6= 0, so the series diverges at x = ±1.

We conclude the power series converges for |x| < 1 and diverges for
|x| ≥ 1.
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Example 6. Find the radius of convergence of the power series
∞∑
n=0

(−3x)n√
n + 1

and discuss the convergence for x at the radius of convergence.

The power series is
∞∑
n=0

(−3x)n√
n + 1

=
∞∑
n=0

(−3)n√
n + 1

xn

The radius of convergence is

R = lim
n→∞

| cn
cn+1

| = lim
n→∞

|
(−3)n√
n+1

(−3)n+1
√
n+2

| = 1

3
lim
n→∞

√
n + 2

n + 1
=

1

3

When x = 1
3
, the series becomes

∞∑
n=0

(−1)n√
n + 1

, which is convergent by the

Alternating Convergence Test.

When x = −1
3
, the series becomes

∞∑
n=0

1

n + 1
, which is divergent.

Example 7. The Bessel function is defined as

J(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2

Find its domain.
To find its domain is the same as to find all x at which the power series

converges. Let y = x2, then consider

J̃(y) =
∞∑
n=0

(−1)nyn

22n(n!)2

We see J(x) = J̃(x2), so we first figure out the domain for J̃ .
The radius of convergence for J̃ is

R = lim
n→∞

|
(−1)n

22n(n!)2

(−1)n+1

22(n+1)((n+1)!)2

| = lim
n→∞

4(n + 1)2 =∞

So the domain of J̃ is R, hence the domain of J(x) is R.
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